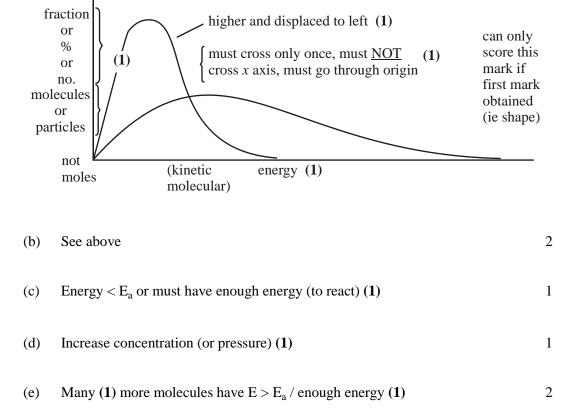

3. Increased surface area (1) more collisions (1)

	(c)	(i)	$2H_2O_2 \rightarrow 2H_2O + O_2$	1	
		(ii)	Speeds up (alters the rate of) a chemical reaction Remains unchanged (or not used up)	1 1	
		(iii)	Remains unchanged (or not used up or not in the overall reaction equation) Offers alternative reaction route (or acts as an intermediate)	1	.0]
5.	(a)	Graph	a starts at origin	1	
		Graph	skewed to left and has decreasing gradient to maximum	1	
		-	after maximum decreases in steepness, never touches x axis, levels ss than 5 mm from x axis.	1	
	(b)	Minin	num energy	1	
		To sta	art a reaction (or for a reaction to occur)	1	
	(c)	Moleo	cules gain energy (or always some molecules have $E > E_a$)	1	
		Due to	o collisions	1	


(ii) The total number of particles (or molecules) in the sample **OR the number of molecules present**

	(iii)	No molecules have no energy OR all molecules have some energy	
		Do not allow "if there are no molecules there is no energy"	4
(b)	(i)	The minimum energy required (1)	
		for a reaction to occur (1) OR to start reaction or for a successful collision	
	(ii)	Changes: Catalyst (1)	
		Explanation: Alternative route (1), with a lower activation energy (1) OR a lower activation energy (1) so more molecules can react (1)/more molecules have this energy	
		If change incorrect CE = 0	
		Allow answers anywhere in b (ii)	5

[9]

2

10. (a)

NOT KE increases with T

(f) Lowers E_a (1) alternative route (1)

[10]

2

2

 12. (a) Activation energy;-The minimum energy needed for a reaction to occur / start (1)
 1

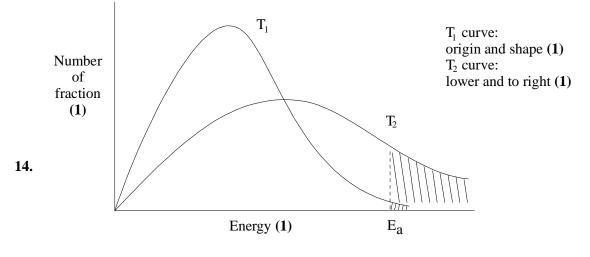
- (b) Catalyst effect:-
 - Alternative route (or more molecules have Ea) (1) Lower activation energy (1)

(c)	Increase in moles of gas:-		
	Position of $E_{\rm mp}$ unchanged (1)		
	More molecules with $E_{\rm mp}$ (1)		
	Area under curve increases (1)		
	Molecules with $E \ge E_a$ increased (1)		
	Temperature decreased:-		
	Position of $E_{\rm mp}$ moves to the left (1)		
	More molecules with $E_{\rm mp}$ (1)		
	Area under curve unchanged (1)		
	Molecules with $E \ge E_a$ decreased (1)		
	Catalyst introduced:-		
	Position of $E_{\rm mp}$ unchanged (1)		
	Molecules with $E_{\rm mp}$ unchanged (1)		
	Area under curve unchanged (1)		
	Molecules with $E \ge E_a$ increased (1)	12	
			[45]

[15]

1

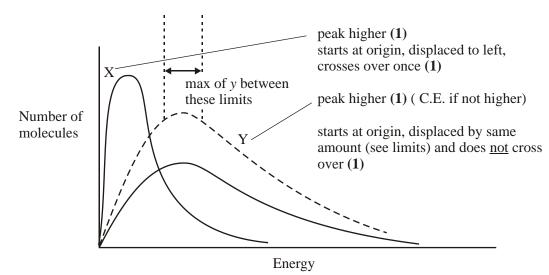
1


13.	(a)	the <u>minimum energy;</u> <u>Energy</u> required for a reaction to occur; (or to start a reaction or for successful collisions)	1 1
	(b)	axes labelled:- y: number (<i>or fraction or %</i>) of molecules (<i>or particles</i>) x: energy (<i>or KE</i>); curve starts at origin; skewed to right; approaches x axis as an asymptote; (<i>penalise a curve that levels off > 10% of max peak height or a</i> <i>curve that crosses the energy axis</i>)	1 1 1 1
		second curve displaced to the left (and does not cross T_1 curve for a second time) and peak higher;	1 1

(can score this mark from suitably marked curves)

many fewer molecules;

fewer molecules have $E > E_a$;


(b)	molecules (or particles or collisions) do not have enough energy; (or orientation may be wrong)	1	
	increase the pressure;	1	
	(or increase the concentration or reduce the volume)		
	increases the collision frequency;	1	
	(or more collisions)		
	(do not allow if stated to be due to increase in energy implied by		
	temperature increase)		
	add a catalyst;	1	
	lowers <u>activation energy</u> (or E_a) (Q of L mark);	1	
	$\frac{det valor energy}{det valor energy} (or L_a) (g of L mark),$	1	[15]

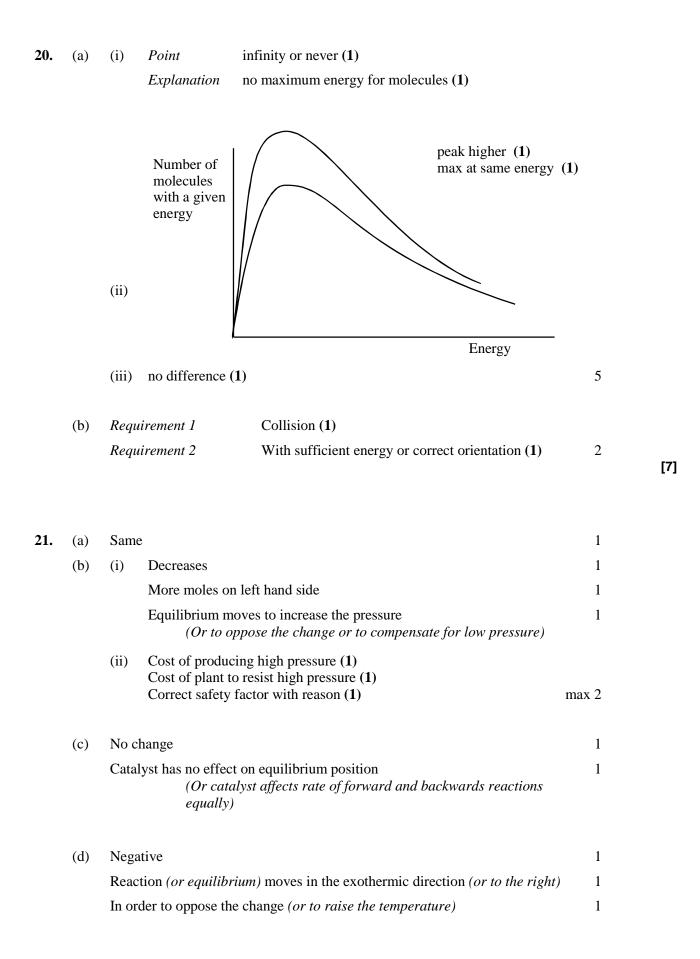
At T2:	more molecules (1)
	have sufficient energy (1)
	plus reference to E_a or shaded area on graph (1)
Larger mass:	more particles (1)
	higher curve (1)
	most probable energy is same (1)

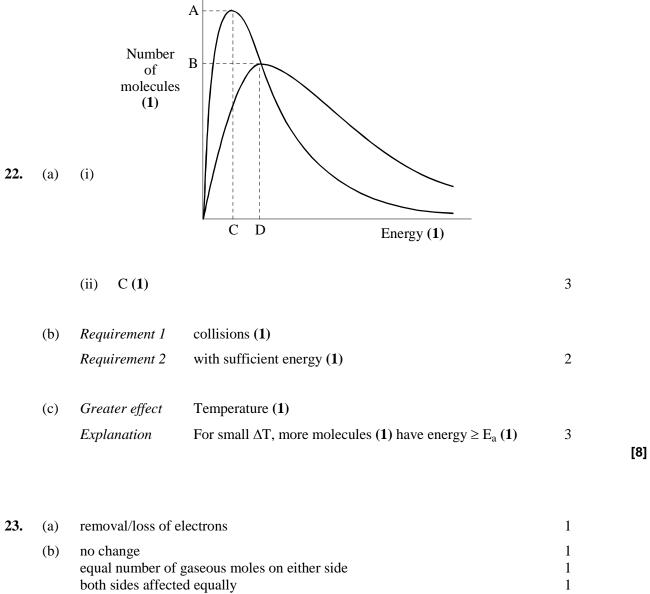
[10]

15. (a) (i) (ii)

(b) (i) collide (1)
with sufficient energy (or
$$E \ge E_a$$
) (1) (or with correct orientation)

(ii) molecules (or particles) have more energy (or move faster) (1) more molecules (or collisions) have $E \ge E_a$ (or sufficient energy) (1)


(c) (i) equilibrium reached (1) (or rate forward reaction = rate backward)


(ii) Reaction is endothermic (1) or ΔH +ve or reverse reaction is exothermic

> endothermic reaction favoured (1) (or reaction shifts to R or moves forward or more products formed)

[11]

4

equilibrium moves to lower the temperature/oppose the change

endothermic reaction favoured /forward reaction is endothermic

1

1

1

1

increases

(c)	(i)	+2 +5	
	(ii)	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	l
	(iii)	$Ag \rightarrow Ag^+ + e^-$ 1	l
	(iv)	$NO_3^- + 4H^+ + 3Ag \rightarrow NO + 2H_2O + 3Ag^+$	[40]
			[12]

24. (a) 12 (kPa)
pp = mole fraction × total pressure or mole fraction =
$$12/104$$

1
 $= 0.115$
(allow 0.12)

(c)
$$K_p = \frac{(pSO_3)^2}{(pSO_2)^2 \times (pO_2)}$$
 1
(*If* K_p wrong, allow consequential units only)
(*penalise square brackets in expression but then mark on*)

$$= \frac{68^2}{24^2 \times 12}$$
= 0.669
(Allow 0.67)

(Allow full marks in calculation consequential on their values in (a) and (b))

 kPa^{-1}

 (d) T₂ 1 (Must be correct to score any marks in this section)
 <u>Exothermic</u> 1
 Reduce T to shift equilibrium to the right or forward reaction favoured by low T or K_p increases for low T or k_p increases for low T 1

1

(e) Increase

None

[13]

1

1

Notes

(a) If K_p has [] lose mark in (a) but allow full marks in (d)

If K_p wrong/upside down etc, allow max 2 in (d) for substitution of numbers (1) and consequential units (1)

(b) Mark for moles of SO_2Cl_2 can be scored in part (c) (ii) if not gained in (b)

1.75 get (2)

If moles of $SO_2Cl_2 = 1$, this is a Chemical Error, hence a 2 mark penalty

- If total moles given in (b) = 1.75, this scores [2] in (b); but if the no moles of SO₂Cl₂ = 1 in (c)(ii), lose both marks in (c)(ii) for pp of SO₂Cl₂ = (1/1.75) × 125, i.e. the 2 mark penalty is in (c)(ii).
- If total moles given in (b) = 2.5, score zero in (b), but can gain full marks in (c)(ii) consequentially, i.e. the 2 mark penalty is in (b).
- If moles of SO₂Cl₂ = 1 and total in (b) does not equal 2.5, still lose both in (b) but can get all 4 conseq in (c)(ii) for 1/x etc and 0.75/x etc
- (c) (i) Allow "Total pressure = sum of partial pressures" for (1) or $p_A = x_A \times p_{tot}$
 - (ii) First mark is for mole fraction.If either number in either mole fraction is not consequential on (b), then lose both marks for that partial p.
- (d) If pCl₂ is not equal to pSO₂ or any number used in K_p is not conseq on (c)(ii), allow units only

SIG FIGS; must be 3 sig figs in (b) but then allow 2 sig figs in (c) and (d); (ignore extra figs) but penalise incorrect rounding

- (e) If effect wrong, no marks for explanation.If effect missing, e.g. answer states "equm shifts to right", mark on.In the explanation, the word "endothermic" (or its equivalent) is essential.
- **26.** (a) An <u>equilibrium</u> opposes change (1)

(b) (i) Effect on yield of hydrogen: decreases (1) Note C.E. if not decrease, but mark on if no answer
Explanation: pressure lowered (or increase opposed) (1) by favouring fewer moles (of gas) (1)
(ii) Effect on yield of hydrogen: increase (1) CE if wrong as above
Explanation: pressure / concentration / reactants / steam reduced (1) by shifting to right (1) or steam removed or forward reaction favoured

1

	(c)	Reason 1: cost of high temperature / energy (1)		
		Reason 2: cost of plant (to resist high T) too high (1) OR plant could not contain high T	2	[9]
27.	(a)	<u>rate</u> forward reaction = <u>rate</u> backward reaction (1) concentration remains constant (1) NOT 'Equal', Allow 'The same' if clear that means constant		
			2	
	(b)	fewer moles (of gas) on R.H.S (1) (or converse) (methanol favoured) by reducing applied pressure (1) Or removing constraint		
			2	
	(c)	Power / energy required to provide high pressure / pumping (1) Strong pressure vessel / or equipment (1) High maintenance costs Any two		
			2	
	(d)	Effect: decreases (1) Explanation: reaction exothermic (1) system tries to lower T or remove constraint or oppose the change or endothermic reaction favoured	3	
	(e)	to speed up reaction (1) or otherwise to slow or takes too long or to give more molecules E > E _A		
			1	[10]
28.	(a)	mark labelled X on curve A where curve C joins A ;	1	
	(b)	equilibrium opposes a change; (Q of L mark)	1	
	(c)	В	1	

	fewer mo	monia is produced (or yield increases); bles (of gas) on right (or 4 mol goes to 2 mol); um moves to oppose increase in pressure (or oppose change);	1 1 1
(d)	C amount o reaction i	of ammonia (or yield or equilibrium) unchanged; is faster;	1 1 1 [9]
(a)		l (reagents) (reagents) are in the same phase/state/are gases (1) ne forward and backward reations are occurring (1)	

- The forward and backward reations are occurring (1) at the same/equal rate (1) or concentrations of reactants (and products) are constant (1) and reaction is continuous (1) Note: "concentrations of reactants and products are the same" is incorrect
- 3

(b) (i) (Concentration of hydrogen /products) increased (1) NB if a product stated this must be H₂

Equilibrium moves to right / forward reaction favoured (1) to remove added water / system reacts to oppose change (1)

- Mark CE if effect wrong. Do not allow "rate" answers
- (ii) (concentration of hydrogen / products) increased (1)
 Equilibrium moves to right / forward reaction favoured (1)
 Reaction exothermic / gives out heat / moves to oppose change (1)
 Allow max (1) for exothermic if other answers incorrect

6

29.

(c) None (1)

Rates of both forward and backward reactions increased / changed (1)

by same amount (1)

Allow; Activation energy of forward and backward reactions lowered by the same amount (1) CE if effect wrong

[12]

30.	(a)	(i) (ii)	Temperature Explanation Pressure change Explanation	change decrease (1) exothermic reaction (1) decrease (1) fewer moles of gas on l.h.s (1)	4	
	(b)	(i) (ii)	Temperature Pressure Reason 1 Reason 2	to increase reaction rate (1) to increase reaction rate (1) large surface area (1) lower cost in expensive Pt (1)	4	
	(c)	(i) (ii)	-			
		(iii) (iv)	Pollutants (acid ra produced by comb decomposition is a Low T reduces eff	oustion engines	7	
	(d)	•	produced in Stage 3 be recycled to Stage		2	[17]

32. (a) (i) *Rates:* Rates are equal, forward and backward (1) *Concentrations:* <u>Concentrations are constant</u> (1) **Q of L mark**

(ii) *Equilibrium yield:* Decreases (1) if wrong allow max 1 for a correct moles statement

> *Explanation:* More moles / molecules of product (or $2 \rightarrow 4$) (1) Reaction / equilibrium moves to left / reduce constraint (1) **NOT "volume" answers** Allow one for "Reaction favours fewer molecules"

- (iii) Enthalpy of reaction is positive / endothermic (1)
- (iv) Both forward and backward rates changed / increased (1) by equal amount (same proportion) (1)
 allow one for "Ea of forward and backward reactions reduced by an equal amount"

(ii) Higher pressure gives a higher yield (1)
 4 moles of gaseous reactant form 2 moles of gaseous product (1)
 Higher pressure generation or equipment is expensive to produce (1)
 Equilibrium statement required
 Cost factor
 N.B. NOT a safety answer

[14]

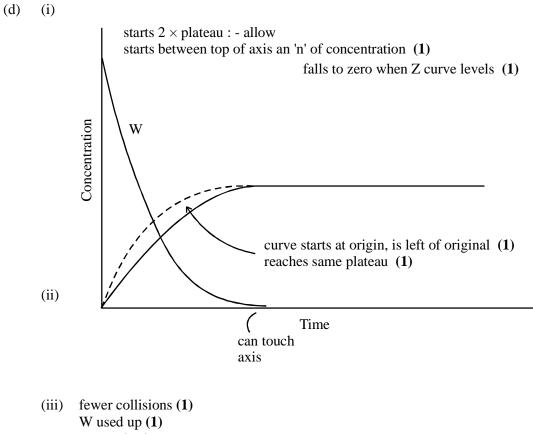
33.	(a)	(i)	<u>enthalpy change</u> when 1 mol of a substance (or compound) (QL mark) is (completely) burned in oxygen (or reacted in <u>excess</u> oxygen) at 298 K and 100 kPa (or under standard conditions)	1 1 1
		(ii)	heat produced = mass of water × Sp heat capacity $x\Delta T$ (or $mc\Delta T$) = 150×4.18×64 (note if mass = 2.12 lose first 2 marks then conseq) = 40100 J or = 40.1 kJ (allow 39.9-40.2 must have correct units) moles methanol = mass/M _r = 2.12/32 (1) = 0.0663	1 1 1
			$\Delta H = -40.1/0.0663 = -605 \text{ kJ (mol}^{-1})$ (allow -602 to -608 or answer in J) (note allow conseq marking after all mistakes but note use of 2.12 g loses 2 marks	1
	(b)	(i)	equilibrium shifts to left at high pressure because position of equilibrium moves to favour fewer moles (of gas)	1 1
		(ii)	at high <u>temperature</u> reaction yield is low (or at low <u>T</u> yield is high) at low <u>temperature</u> reaction is slow (or at high <u>T</u> reaction is fast) therefore use a balance (or compromise) between <u>rate</u> and <u>yield</u>	1 1 1

(c)	$\Delta H = \Sigma \Delta H_{c}^{\theta} (\text{reactants}) - \Sigma \Delta H_{c}^{\theta} (\text{products}) \text{ (or correct cycle)}$	1	
	$\Delta H_{c}^{\Theta}(\mathrm{CH}_{3}\mathrm{OH}) = \Delta H_{c}^{\Theta}(\mathrm{CO}) + 2 \times \Delta H_{c}^{\Theta}(\mathrm{H}_{2}) - \Delta H$	1	
	$= (-283) + (2 \times -286) - (-91)$ (mark for previous equation or this)		
	$= -764 \text{ (kJ mol}^{-1}) \text{ (units not essential but lose mark if units wrong)}$	1	
	$(note + 764 \ scores \ 1/3)$		
			[15]

34.	(a)	Homogeneous;	All reactants in the same phase or state (1)
		Dynamic;	Continuous or 'on-going' (1)
		Equilibrium:	Concentrations of reactants and products constant or rates of forward and backward reactions equal (1)
		Equation;	$2NH_3 \rightleftharpoons N_2 + 3H_2$ (Must be decomposition) (1)
		Кс;	$[N_2][H_2]^3/[NH_3]^2$ (1)

(b)	Conditions:	decomposition favoured by high temp (1) since the reaction endothermic or logical statement with application of Le Chatelier's principle (1)	
		decomposition favoured by low pressure (1)	
		2 mole gas giving 4 moles gas or more gas moles on right (1)	
			4
(c)	In practise	low pressure means low production (1) low pressure means low rate (1)	
		high temperature means high rate (1) high temperature expensive (1)	
	Catalyst	equilibrium yield unaffected (1) rates of forward and backwards reactions increased by an equal amount (1) more hydrogen produced in a given time (1) Max	6
			[15]

Mill Hill High School


		oppose change OR to absorb heat (1) If "Yield statement" incorrect allow max one if reaction stated to be endothermic	
		Increase in pressure:	
		 Yield is decreased (Allow if for H₂ (g) or products) (1) Increase in moles of gas or 2 moles increased to 4 moles or more moles on right (1) Equilibrium moves to the left OR backwards, OR Equilibrium moves to oppose change OR to reduce pressure (1) 	
		If "Yield statement" incorrect allow max one if number of moles change is correct.	
			6
	(b)	Equilibrium yield: Unaffected or equilibrium unchanged (1) Rate or speed increased (1) Forward and backwards reactions equally or by the same amount (1)	
		Amount of hydrogen produced: More hydrogen produced (1)	
			4
36.	(a)	<u>minimum</u> energy (1) required before a reaction can occur or go or start (1)	2
	(b)	speeds up (changes) reaction rate (1) without being (chemically) changed (used up) (1)	2
	(c)	provides alternative reaction route (1) with a lower activation energy (1) in (b) and (c) reward 4 marks for 4 points wherever found	2

Reaction endothermic (1)

Yield is increased (Allow if for $H_2(g)$ or products) (1)

Equilibrium moves to the right OR forward, OR Equilibrium moves to

[10]

fewer collisions (1)
 W used up (1)
 or reactants
 or reagents
 or fewer particles

[12]